Biofelsefe — Bioloji
NFA 2020 / Aziz Yardımlı


Biofelsefe — Bioloji


  Biology (W)


Biology (W)

Biology is the natural science that studies life and living organisms, including their physical structure, chemical processes, molecular interactions, physiological mechanisms, development and evolution. Despite the complexity of the science, there are certain unifying concepts that consolidate it into a single, coherent field. Biology recognizes the cell as the basic unit of life, genes as the basic unit of heredity, and evolution as the engine that propels the creation and extinction of species. Living organisms are open systems that survive by transforming energy and decreasing their local entropy to maintain a stable and vital condition defined as homeostasis.

Sub-disciplines of biology are defined by the research methods employed and the kind of system studied: theoretical biology uses mathematical methods to formulate quantitative models while experimental biology performs empirical experiments to test the validity of proposed theories and understand the mechanisms underlying life and how it appeared and evolved from non-living matter about 4 billion years ago through a gradual increase in the complexity of the system. See branches of biology.



Etymology (W)

Biology derives from the Ancient Greek words of βίος; romanized bíos meaning "life" and -λογία; romanized logía (-logy) meaning "branch of study" or "to speak". Those combined make the Greek word βιολογία; romanized biología meaning biology. Despite this, the term βιολογία as a whole didn’t exist in Ancient Greek. The first to borrow it was the English and French (biologie). Since the advent of the scientific era, reanalyzable as a compound using the combining forms bio + logy.

The Latin-language form of the term first appeared in 1736 when Swedish scientist Carl Linnaeus (Carl von Linné) used biologi in his Bibliotheca Botanica. It was used again in 1766 in a work entitled Philosophiae naturalis sive physicae: tomus III, continens geologian, biologian, phytologian generalis, by Michael Christoph Hanov, a disciple of Christian Wolff. The first German use, Biologie, was in a 1771 translation of Linnaeus' work. In 1797, Theodor Georg August Roose used the term in the preface of a book, Grundzüge der Lehre van der Lebenskraft. Karl Friedrich Burdach used the term in 1800 in a more restricted sense of the study of human beings from a morphological, physiological and psychological perspective (Propädeutik zum Studien der gesammten Heilkunst). The term came into its modern usage with the six-volume treatise Biologie, oder Philosophie der lebenden Natur (1802–22) by Gottfried Reinhold Treviranus, who announced:

The objects of our research will be the different forms and manifestations of life, the conditions and laws under which these phenomena occur, and the causes through which they have been effected. The science that concerns itself with these objects we will indicate by the name biology [Biologie] or the doctrine of life [Lebenslehre].



History (W)

Although modern biology is a relatively recent development, sciences related to and included within it have been studied since ancient times. Natural philosophy was studied as early as the ancient civilizations of Mesopotamia, Egypt, the Indian subcontinent, and China. However, the origins of modern biology and its approach to the study of nature are most often traced back to ancient Greece. While the formal study of medicine dates back to Pharaonic Egypt, it was Aristotle (384-322 BC) who contributed most extensively to the development of biology. Especially important are his History of Animals and other works where he showed naturalist leanings, and later more empirical works that focused on biological causation and the diversity of life. Aristotle's successor at the Lyceum, Theophrastus, wrote a series of books on botany that survived as the most important contribution of antiquity to the plant sciences, even into the Middle Ages.

Scholars of the medieval Islamic world who wrote on biology included al-Jahiz (781-869), Al-Dīnawarī (828-896), who wrote on botany, and Rhazes (865-925) who wrote on anatomy and physiology. Medicine was especially well studied by Islamic scholars working in Greek philosopher traditions, while natural history drew heavily on Aristotelian thought, especially in upholding a fixed hierarchy of life.

Biology began to quickly develop and grow with Anton van Leeuwenhoek's dramatic improvement of the microscope. It was then that scholars discovered spermatozoa, bacteria, infusoria and the diversity of microscopic life. Investigations by Jan Swammerdam led to new interest in entomology and helped to develop the basic techniques of microscopic dissection and staining.

Advances in microscopy also had a profound impact on biological thinking. In the early 19th century, a number of biologists pointed to the central importance of the cell. Then, in 1838, Schleiden and Schwann began promoting the now universal ideas that (1) the basic unit of organisms is the cell and (2) that individual cells have all the characteristics of life, although they opposed the idea that (3) all cells come from the division of other cells. Thanks to the work of Robert Remak and Rudolf Virchow, however, by the 1860s most biologists accepted all three tenets of what came to be known as cell theory.

Meanwhile, taxonomy and classification became the focus of natural historians. Carl Linnaeus published a basic taxonomy for the natural world in 1735 (variations of which have been in use ever since), and in the 1750s introduced scientific names for all his species. Georges-Louis Leclerc, Comte de Buffon, treated species as artificial categories and living forms as malleable—even suggesting the possibility of common descent. Although he was opposed to evolution, Buffon is a key figure in the history of evolutionary thought; his work influenced the evolutionary theories of both Lamarck and Darwin.

Serious evolutionary thinking originated with the works of Jean-Baptiste Lamarck, who was the first to present a coherent theory of evolution. He posited that evolution was the result of environmental stress on properties of animals, meaning that the more frequently and rigorously an organ was used, the more complex and efficient it would become, thus adapting the animal to its environment. Lamarck believed that these acquired traits could then be passed on to the animal's offspring, who would further develop and perfect them. However, it was the British naturalist Charles Darwin, combining the biogeographical approach of Humboldt, the uniformitarian geology of Lyell, Malthus's writings on population growth, and his own morphological expertise and extensive natural observations, who forged a more successful evolutionary theory based on natural selection; similar reasoning and evidence led Alfred Russel Wallace to independently reach the same conclusions. Although it was the subject of controversy (which continues to this day), Darwin's theory quickly spread through the scientific community and soon became a central axiom of the rapidly developing science of biology.

The discovery of the physical representation of heredity came along with evolutionary principles and population genetics. In the 1940s and early 1950s, experiments pointed to DNA as the component of chromosomes that held the trait-carrying units that had become known as genes. A focus on new kinds of model organisms such as viruses and bacteria, along with the discovery of the double-helical structure of DNA in 1953, marked the transition to the era of molecular genetics. From the 1950s to the present times, biology has been vastly extended in the molecular domain. The genetic code was cracked by Har Gobind Khorana, Robert W. Holley and Marshall Warren Nirenberg after DNA was understood to contain codons. Finally, the Human Genome Project was launched in 1990 with the goal of mapping the general human genome. This project was essentially completed in 2003, with further analysis still being published. The Human Genome Project was the first step in a globalized effort to incorporate accumulated knowledge of biology into a functional, molecular definition of the human body and the bodies of other organisms.


Foundations of modern biology

Cell theory

Cell theory (W)

Cell theory states that the cell is the fundamental unit of life, that all living things are composed of one or more cells, and that all cells arise from pre-existing cells through cell division. In multicellular organisms, every cell in the organism's body derives ultimately from a single cell in a fertilized egg. The cell is also considered to be the basic unit in many pathological processes. In addition, the phenomenon of energy flow occurs in cells in processes that are part of the function known as metabolism. Finally, cells contain hereditary information (DNA), which is passed from cell to cell during cell division. Research into the origin of life, abiogenesis, amounts to an attempt to discover the origin of the first cells.



Evolution (W)

A central organizing concept in biology is that life changes and develops through evolution, and that all life-forms known have a common origin. The theory of evolution postulates that all organisms on the Earth, both living and extinct, have descended from a common ancestor or an ancestral gene pool. This universal common ancestor of all organisms is believed to have appeared about 3.5 billion years ago. Biologists regard the ubiquity of the genetic code as definitive evidence in favor of the theory of universal common descent for all bacteria, archaea, and eukaryotes (see: origin of life).

The term "evolution" was introduced into the scientific lexicon by Jean-Baptiste de Lamarck in 1809, and fifty years later Charles Darwin posited a scientific model of natural selection as evolution's driving force. (Alfred Russel Wallace is recognized as the co-discoverer of this concept as he helped research and experiment with the concept of evolution.) Evolution is now used to explain the great variations of life found on Earth.

Darwin theorized that species flourish or die when subjected to the processes of natural selection or selective breeding. Genetic drift was embraced as an additional mechanism of evolutionary development in the modern synthesis of the theory.

The evolutionary history of the species—which describes the characteristics of the various species from which it descended—together with its genealogical relationship to every other species is known as its phylogeny. Widely varied approaches to biology generate information about phylogeny. These include the comparisons of DNA sequences, a product of molecular biology (more particularly genomics), and comparisons of fossils or other records of ancient organisms, a product of paleontology. Biologists organize and analyze evolutionary relationships through various methods, including phylogenetics, phenetics, and cladistics. (For a summary of major events in the evolution of life as currently understood by biologists, see evolutionary timeline.)

Evolution is relevant to the understanding of the natural history of life forms and to the understanding of the organization of current life forms. But, those organizations can only be understood in light of how they came to be by way of the process of evolution. Consequently, evolution is central to all fields of biology.



Genetics (W)

Genes are the primary units of inheritance in all organisms. A gene is a unit of heredity and corresponds to a region of DNA that influences the form or function of an organism in specific ways. All organisms, from bacteria to animals, share the same basic machinery that copies and translates DNA into proteins. Cells transcribe a DNA gene into an RNA version of the gene, and a ribosome then translates the RNA into a sequence of amino acids known as a protein. The translation code from RNA codon to amino acid is the same for most organisms. For example, a sequence of DNA that codes for insulin in humans also codes for insulin when inserted into other organisms, such as plants.

DNA is found as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. A chromosome is an organized structure consisting of DNA and histones. The set of chromosomes in a cell and any other hereditary information found in the mitochondria, chloroplasts, or other locations is collectively known as a cell's genome. In eukaryotes, genomic DNA is localized in the cell nucleus, or with small amounts in mitochondria and chloroplasts. In prokaryotes, the DNA is held within an irregularly shaped body in the cytoplasm called the nucleoid. The genetic information in a genome is held within genes, and the complete assemblage of this information in an organism is called its genotype.



Homeostasis (W)

Homeostasis is the ability of an open system to regulate its internal environment to maintain stable conditions by means of multiple dynamic equilibrium adjustments that are controlled by interrelated regulation mechanisms. All living organisms, whether unicellular or multicellular, exhibit homeostasis.

To maintain dynamic equilibrium and effectively carry out certain functions, a system must detect and respond to perturbations. After the detection of a perturbation, a biological system normally responds through negative feedback that stabilize conditions by reducing or increasing the activity of an organ or system. One example is the release of glucagon when sugar levels are too low.



Energy (W)

The survival of a living organism depends on the continuous input of energy. Chemical reactions that are responsible for its structure and function are tuned to extract energy from substances that act as its food and transform them to help form new cells and sustain them. In this process, molecules of chemical substances that constitute food play two roles; first, they contain energy that can be transformed and reused in that organism's biological, chemical reactions; second, food can be transformed into new molecular structures (biomolecules) that are of use to that organism.

The organisms responsible for the introduction of energy into an ecosystem are known as producers or autotrophs. Nearly all such organisms originally draw their energy from the sun. Plants and other phototrophs use solar energy via a process known as photosynthesis to convert raw materials into organic molecules, such as ATP, whose bonds can be broken to release energy. A few ecosystems, however, depend entirely on energy extracted by chemotrophs from methane, sulfides, or other non-luminal energy sources.

Some of the energy thus captured produces biomass and energy that is available for growth and development of other life forms. The majority of the rest of this biomass and energy are lost as waste molecules and heat. The most important processes for converting the energy trapped in chemical substances into energy useful to sustain life are metabolism and cellular respiration.


Study and research


Structural (W)

Molecular biology is the study of biology at the molecular level. This field overlaps with other areas of biology, particularly those of genetics and biochemistry. Molecular biology is a study of the interactions of the various systems within a cell, including the interrelationships of DNA, RNA, and protein synthesis and how those interactions are regulated.

The next larger scale, cell biology, studies the structural and physiological properties of cells, including their internal behavior, interactions with other cells, and with their environment. This is done on both the microscopic and molecular levels, for unicellular organisms such as bacteria, as well as the specialized cells of multicellular organisms such as humans. Understanding the structure and function of cells is fundamental to all of the biological sciences. The similarities and differences between cell types are particularly relevant to molecular biology.

Anatomy is a treatment of the macroscopic forms of such structures organs and organ systems.

Genetics is the science of genes, heredity, and the variation of organisms. Genes encode the information needed by cells for the synthesis of proteins, which in turn play a central role in influencing the final phenotype of the organism. Genetics provides research tools used in the investigation of the function of a particular gene, or the analysis of genetic interactions. Within organisms, genetic information is physically represented as chromosomes, within which it is represented by a particular sequence of amino acids in particular DNA molecules.

Developmental biology studies the process by which organisms grow and develop. Developmental biology, originated from embryology, studies the genetic control of cell growth, cellular differentiation, and "cellular morphogenesis," which is the process that progressively gives rise to tissues, organs, and anatomy. Model organisms for developmental biology include the round worm Caenorhabditis elegans, the fruit fly Drosophila melanogaster, the zebrafish Danio rerio, the mouse Mus musculus, and the weed Arabidopsis thaliana. (A model organism is a species that is extensively studied to understand particular biological phenomena, with the expectation that discoveries made in that organism provide insight into the workings of other organisms.)




Physiological (W)

Physiology is the study of the mechanical, physical, and biochemical processes of living organisms function as a whole. The theme of "structure to function" is central to biology. Physiological studies have traditionally been divided into plant physiology and animal physiology, but some principles of physiology are universal, no matter what particular organism is being studied. For example, what is learned about the physiology of yeast cells can also apply to human cells. The field of animal physiology extends the tools and methods of human physiology to non-human species. Plant physiology borrows techniques from both research fields.

Physiology is the study the interaction of how, for example, the nervous, immune, endocrine, respiratory, and circulatory systems, function and interact. The study of these systems is shared with such medically oriented disciplines as neurology and immunology.



Evolutionary (W)

Evolutionary research is concerned with the origin and descent of species, and their change over time. It employs scientists from many taxonomically oriented disciplines, for example, those with special training in particular organisms such as mammalogy, ornithology, botany, or herpetology, but are of use in answering more general questions about evolution.

Evolutionary biology is partly based on paleontology, which uses the fossil record to answer questions about the mode and tempo of evolution, and partly on the developments in areas such as population genetics. In the 1980s, developmental biology re-entered evolutionary biology after its initial exclusion from the modern synthesis through the study of evolutionary developmental biology. Phylogenetics, systematics, and taxonomy are related fields often considered part of evolutionary biology.



Systematic (W)

Multiple speciation events create a tree structured system of relationships between species. The role of systematics is to study these relationships and thus the differences and similarities between species and groups of species. However, systematics was an active field of research long before evolutionary thinking was common.

Traditionally, living things have been divided into five kingdoms: Monera; Protista; Fungi; Plantae; Animalia. However, many scientists now consider this five-kingdom system outdated. Modern alternative classification systems generally begin with the three-domain system: Archaea (originally Archaebacteria); Bacteria (originally Eubacteria) and Eukaryota (including protists, fungi, plants, and animals).These domains reflect whether the cells have nuclei or not, as well as differences in the chemical composition of key biomolecules such as ribosomes.

Further, each kingdom is broken down recursively until each species is separately classified. The order is: Domain; Kingdom; Phylum; Class; Order; Family; Genus; Species.

Outside of these categories, there are obligate intracellular parasites that are "on the edge of life" in terms of metabolic activity, meaning that many scientists do not actually classify such structures as alive, due to their lack of at least one or more of the fundamental functions or characteristics that define life. They are classified as viruses, viroids, prions, or satellites.

The scientific name of an organism is generated from its genus and species. For example, humans are listed as Homo sapiens. Homo is the genus, and sapiens the species. When writing the scientific name of an organism, it is proper to capitalize the first letter in the genus and put all of the species in lowercase. Additionally, the entire term may be italicized or underlined.

The dominant classification system is called the Linnaean taxonomy. It includes ranks and binomial nomenclature. How organisms are named is governed by international agreements such as the International Code of Nomenclature for algae, fungi, and plants (ICN), the International Code of Zoological Nomenclature (ICZN), and the International Code of Nomenclature of Bacteria (ICNB). The classification of viruses, viroids, prions, and all other sub-viral agents that demonstrate biological characteristics is conducted by the International Committee on Taxonomy of Viruses (ICTV) and is known as the International Code of Viral Classification and Nomenclature (ICVCN). However, several other viral classification systems do exist.

A merging draft, BioCode, was published in 1997 in an attempt to standardize nomenclature in these three areas, but has yet to be formally adopted. The BioCode draft has received little attention since 1997; its originally planned implementation date of January 1, 2000, has passed unnoticed. A revised BioCode that, instead of replacing the existing codes, would provide a unified context for them, was proposed in 2011. However, the International Botanical Congress of 2011 declined to consider the BioCode proposal. The ICVCN remains outside the BioCode, which does not include viral classification.



Kingdoms (W)


Main article: Kingdom (biology)


Ecological and environmental

Ecological and environmental (W)

Ecology is the study of the distribution and abundance of living organisms, the interaction between them and their environment. An organism shares an environment that includes other organisms and biotic factors as well as local abiotic factors (non-living) such as climate and ecology. One reason that biological systems can be difficult to study is that so many different interactions with other organisms and the environment are possible, even on small scales. A microscopic bacterium responding to a local sugar gradient is responding to its environment as much as a lion searching for food in the African savanna. For any species, behaviors can be co-operative, competitive, parasitic, or symbiotic. Matters become more complex when two or more species interact in an ecosystem.

Ecological systems are studied at several different levels, from the scale of the ecology of individual organisms, to those of populations, to the ecosystems and finally the biosphere. The term population biology is often used interchangeably with population ecology, although population biology is more frequently used in the case of diseases, viruses, and microbes, while the term population ecology is more commonly applied to the study of plants and animals. Ecology draws on many subdisciplines.

Ethology is the study of animal behavior (particularly that of social animals such as primates and canids), and is sometimes considered a branch of zoology. Ethologists have been particularly concerned with the evolution of behavior and the understanding of behavior in terms of the theory of natural selection. In one sense, the first modern ethologist was Charles Darwin, whose book, The Expression of the Emotions in Man and Animals, influenced many ethologists to come.

Biogeography studies the spatial distribution of organisms on the Earth, focusing on such topics as plate tectonics, climate change, dispersal and migration, and cladistics.


Basic unresolved problems in biology

Basic unresolved problems in biology

Basic unresolved problems in biology (W)

Despite the profound advances made over recent decades in our understanding of life's fundamental processes, some basic problems have remained unresolved. Some examples are

Origin of life. While there is very good evidence for the abiotic origin of biological compounds such as amino acids, nucleotides and lipids, it is largely unclear how these molecules came together to form the first cells. Related is the question of extra-terrestrial life. If we understand how life originated on earth, we can predict more reliably which conditions are required to generate life on other planets.

Aging. At present, there is no consensus view on the underlying cause of aging. Various competing theories are outlined in Ageing Theories.

Pattern formation. We have a good understanding of pattern formation in some systems, such as the early insect embryo, but the generation of many patterns in nature cannot be explained easily, e.g. the stripes in zebras or many snakes, such as coral snakes. While we know that the patterns are generated by selective activation or repression of genes, many of these genes and their regulatory mechanisms remain unknown.


Branches and career options

Branches and career options

Branches and career options (W)

Biology is an area of science with numerous subdisciplines that are concerned with all aspects of life, in fact all aspects of modern human life. That said, there are countless career options, ranging from basic science to industrial or agricultural applications. These are the main branches of biology:

  • Anatomy – the study of organisms’ structures
    • Comparative anatomy – the study of evolution of species through similarities and differences in their anatomy
    • Histology – the study of tissues, a microscopic branch of anatomy
  • Astrobiology (also known as exobiology, exopaleontology, and bioastronomy) – the study of evolution, distribution, and future of life in the universe
  • Biochemistry – the study of the chemical reactions required for life to exist and function, usually a focus on the cellular level
  • Biological engineering – the attempt to create products inspired by biological systems or to modify and interact with the biological systems
  • Biogeography – the study of the distribution of species spatially and temporally
  • Bioinformatics – the use of information technology for the study, collection, and storage of genomic and other biological data
  • Biolinguistics – the study of the biology and evolution of language
  • Biomechanics – the study of the mechanics of living beings
  • Biomedical research – the study of health and disease
  • Biophysics – the study of biological processes by applying the theories and methods traditionally employed in the physical sciences
  • Biotechnology – the study of the manipulation of living matter, including genetic modification and synthetic biology
    • Synthetic biology – research integrating biology and engineering; construction of biological functions not found in nature
  • Botany – the study of plants
  • Cell biology – the study of the cell as a complete unit, and the molecular and chemical interactions that occur within a living cell
  • Chronobiology – the study of periodic events in living systems
  • Cognitive biology – the study of cognition
  • Conservation biology – the study of the preservation, protection, or restoration of the natural environment, natural ecosystems, vegetation, and wildlife
  • Cryobiology – the study of the effects of lower than normally preferred temperatures on living beings
  • Developmental biology – the study of the processes through which an organism forms, from zygote to full structure
    • Embryology – the study of the development of embryo (from fecundation to birth)
    • Gerontology – study of ageing processes
  • Ecology – the study of the interactions of living organisms with one another and with the non-living elements of their environment
  • Evolutionary biology – the study of the origin and descent of species over time
  • Genetics – the study of genes and heredity
    • Genomics – the study of genomes
    • Epigenetics – the study of heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence
  • Immunology – the study of the immune system
  • Marine biology (or biological oceanography) – the study of ocean ecosystems, plants, animals, and other living beings
  • Microbiology – the study of microscopic organisms (microorganisms) and their interactions with other living things
  • Molecular biology – the study of biology and biological functions at the molecular level, some cross over with biochemistry
  • Nanobiology – the application of nanotechnology in biological research, and the study of living organisms and parts on the nanoscale level of organization
  • Neuroscience – the study of the nervous system
  • Paleontology – the study of fossils and sometimes geographic evidence of prehistoric life
  • Pathobiology or pathology – the study of diseases, and the causes, processes, nature, and development of disease
  • Pharmacology – the study of the interactions between drugs and organisms
  • Physiology – the study of the functions and mechanisms occurring in living organisms
  • Phytopathology – the study of plant diseases (also called Plant Pathology)
  • Psychobiology – the application of methods traditionally used in biology to study human and non-human animals behaviour
  • Quantum biology – the study of the role of quantum phenomena in biological processes
  • Sociobiology - the study of social behavior in terms of evolution
  • Systems biology – the study of complex interactions within biological systems through a holistic approach
  • Structural biology – a branch of molecular biology, biochemistry, and biophysics concerned with the molecular structure of biological macromolecules
  • Theoretical biology – the branch of biology that employs abstractions and mathematical models to explain biological phenomena
  • Zoology – the study of animals, including classification, physiology, development, evolution and behaviour, including:



  Biology (B)



What is biology?

Biology is a branch of science that deals with living organisms and their vital processes. Biology encompasses diverse fields, including botanyconservationecologyevolutiongeneticsmarine biologymedicinemicrobiologymolecular biologyphysiology, and zoology.

Why is biology important?

As a field of science, biology helps us understand the living world and the ways its many species (including humans) function, evolve, and interact. Advances in medicineagriculturebiotechnology, and many other areas of biology have brought improvements in the quality of life. Fields such as genetics and evolution give insight into the past and can help shape the future, and research in ecology and conservation inform how we can protect this planet’s precious biodiversity.

Where do biology graduates work?

Biology graduates can hold a wide range of jobs, some of which may require additional education. A person with a degree in biology could work in agriculture, health care, biotechnology, education, environmental conservation, research, forensic science, policy, science communication, and many other areas.


Biology (B)

Biology (B)



Introduction (B)

Biology, study of living things and their vital processes. The field deals with all the physicochemical aspects of life. The modern tendency toward cross-disciplinary research and the unification of scientific knowledge and investigation from different fields has resulted in significant overlap of the field of biology with other scientific disciplines. Modern principles of other fields—chemistrymedicine, and physics, for example—are integrated with those of biology in areas such as biochemistry, biomedicine, and biophysics.

Biology is subdivided into separate branches for convenience of study, though all the subdivisions are interrelated by basic principles. Thus, while it is custom to separate the study of plants (botany) from that of animals (zoology), and the study of the structure of organisms (morphology) from that of function (physiology), all living things share in common certain biological phenomena—for example, various means of reproductioncell division, and the transmission of genetic material.

Biology is often approached on the basis of levels that deal with fundamental units of life. At the level of  molecular biology, for example, life is regarded as a manifestation of chemical and energy transformations that occur among the many chemical constituents that compose an organism. As a result of the development of increasingly powerful and precise laboratory instruments and techniques, it is possible to understand and define with high precision and accuracy not only the ultimate physiochemical organization (ultrastructure) of the molecules in living matter but also the way living matter reproduces at the molecular level. Especially crucial to those advances was the rise of genomics in the late 20th and early 21st centuries.

Cell biology is the study of cells—the fundamental units of structure and function in living organisms. Cells were first observed in the 17th century, when the compound microscope was invented. Before that time, the individual organism was studied as a whole in a field known as  organismic biology; that area of research remains an important component of the biological sciences.  Population biology deals with groups or populations of organisms that inhabit a given area or region. Included at that level are studies of the roles that specific kinds of plants and animals play in the complex and self-perpetuating interrelationships that exist between the living and the nonliving world, as well as studies of the built-in controls that maintain those relationships naturally. Those broadly based levels—molecules, cells, whole organisms, and populations—may be further subdivided for study, giving rise to specializations such as morphologytaxonomy, biophysics, biochemistry, geneticsepigenetics, and ecology. A field of biology may be especially concerned with the investigation of one kind of living thing—for example, the study of birds in ornithology, the study of fishes in ichthyology, or the study of microorganisms in microbiology.


Basic Concepts Of Biology

Basic Concepts Of Biology

Basic Concepts Of Biology (B)

No text.


Biological principles

Biological principles (B)

No text.



Homeostasis (B)

The concept of homeostasis—that living things maintain a constant internal environment—was first suggested in the 19th century by French physiologist  Claude Bernard, who stated that “all the vital mechanisms, varied as they are, have only one object: that of preserving constant the conditions of life.”

As originally conceived by Bernard, homeostasis applied to the struggle of a single organism to survive. The concept was later extended to include any biological system from the cell to the entire biosphere, all the areas of Earth inhabited by living things.



Unity (B)

All living organisms, regardless of their uniqueness, have certain biological, chemical, and physical characteristics in common. All, for example, are composed of basic units known as  cells and of the same chemical substances, which, when analyzed, exhibit noteworthy similarities, even in such disparate organisms as bacteria and humans. Furthermore, since the action of any organism is determined by the manner in which its cells interact and since all cells interact in much the same way, the basic functioning of all organisms is also similar.

Animal cells and plant cells contain membrane-bound organelles, including a distinct nucleus. In contrast, bacterial cells do not contain organelles.

There is not only unity of basic living substance and functioning but also unity of origin of all living things. According to a theory proposed in 1855 by German pathologist  Rudolf Virchow, “all living cells arise from pre-existing living cells.” That theory appears to be true for all living things at the present time under existing environmental conditions. If, however, life originated on Earth more than once in the past, the fact that all organisms have a sameness of basic structure, composition, and function would seem to indicate that only one original type succeeded.

A common origin of life would explain why in humans or bacteria—and in all forms of life in between—the same chemical substance, deoxyribonucleic acid ( DNA), in the form of genes accounts for the ability of all living matter to replicate itself exactly and to transmit genetic information from parent to offspring. Furthermore, the mechanisms for that transmittal follow a pattern that is the same in all organisms.

Whenever a change in a gene (a  mutation) occurs, there is a change of some kind in the organism that contains the gene. It is this universal phenomenon that gives rise to the differences ( variations) in  populations of organisms from which nature selects for survival those that are best able to cope with changing conditions in the environment.



Evolution (B)

In his theory of  natural selection, which is discussed in greater detail later,  Charles Darwin suggested that “ survival of the fittest” was the basis for organic evolution (the change of living things with time). Evolution itself is a biological phenomenon common to all living things, even though it has led to their differences. Evidence to support the theory of evolution has come primarily from the  fossil record, from comparative studies of structure and function, from studies of embryological development, and from studies of DNA and RNA (ribonucleic acid).

Three types of natural selection, showing the effects of each on the distribution of phenotypes within a population. The downward arrows point to those phenotypes against which selection acts. Stabilizing selection (left column) acts against phenotypes at both extremes of the distribution, favouring the multiplication of intermediate phenotypes. Directional selection (centre column) acts against only one extreme of phenotypes, causing a shift in distribution toward the other extreme. Diversifying selection (right column) acts against intermediate phenotypes, creating a split in distribution toward each extreme.



Diversity (B)

Despite the basic biological, chemical, and physical similarities found in all living things, a diversity of life exists not only among and between species but also within every natural population. The phenomenon of diversity has had a long history of study because so many of the variations that exist in nature are visible to the eye. The fact that organisms changed during prehistoric times and that new variations are constantly evolving can be verified by paleontological records as well as by breeding experiments in the laboratory. Long after Darwin assumed that variations existed, biologists discovered that they are caused by a change in the genetic material (DNA). That change can be a slight alteration in the sequence of the constituents of DNA (nucleotides), a larger change such as a structural alteration of a chromosome, or a complete change in the number of chromosomes. In any case, a change in the genetic material in the reproductive cells manifests itself as some kind of structural or chemical change in the offspring. The consequence of such a mutation depends upon the interaction of the mutant offspring with its environment.

It has been suggested that  sexual reproduction became the dominant type of reproduction among organisms because of its inherent advantage of variability, which is the mechanism that enables a species to adjust to changing conditions. New variations are potentially present in genetic differences, but how preponderant a variation becomes in a gene pool depends upon the number of offspring the mutants or variants produce (differential reproduction). It is possible for a genetic novelty (new variation) to spread in time to all members of a population, especially if the novelty enhances the population’s chances for survival in the environment in which it exists. Thus, when a species is introduced into a new habitat, it either adapts to the change by natural selection or by some other evolutionary mechanism or eventually dies off. Because each new habitat means new adaptations, habitat changes have been responsible for the millions of different kinds of  species and for the heterogeneity within each species.

The total number of extant animal and plant species is estimated at between roughly 5 million and 10 million; about 1.5 million of those species have been described by scientists. The use of classification as a means of producing some kind of order out of the staggering number of different types of organisms appeared as early as the book of  Genesis—with references to cattle, beasts, fowl, creeping things, trees, and so on. The first scientific attempt at classification, however, is attributed to the Greek philosopher  Aristotle, who tried to establish a system that would indicate the relationship of all things to each other. He arranged everything along a scale, or “ladder of nature,” with nonliving things at the bottom; plants were placed below animals, and humankind was at the top. Other schemes that have been used for grouping species include large anatomical similarities, such as wings or fins, which indicate a natural relationship, and also similarities in reproductive structures.

Taxonomy has been based on two major assumptions: one is that similar body construction can be used as a criterion for a classification grouping; the other is that, in addition to structural similarities, evolutionary and molecular relationships between organisms can be used as a means for determining classification.


Behaviour and interrelationships

Behaviour and interrelationships (B)

The study of the relationships of living things to each other and to their environment is known as ecology. Because these interrelationships are so important to the welfare of Earth and because they can be seriously disrupted by human activities, ecology has become an important branch of biology.



Continuity (B)

Whether an organism is a human or a bacterium, its ability to reproduce is one of the most important characteristics of life. Because life comes only from preexisting life, it is only through reproduction that successive generations can carry on the properties of a species.


The study of structure

The study of structure (B)

Living things are defined in terms of the activities or  functions that are missing in nonliving things. The  life processes of every organism are carried out by specific materials assembled in definite structures. Thus, a living thing can be defined as a system, or structure, that reproduces, changes with its environment over a period of time, and maintains its individuality by constant and continuous metabolism.


Cells and their constituents

Cells and their constituents (B)

Biologists once depended on the light microscope to study the morphology of  cells found in higher plants and animals. The functioning of cells in unicellular and in multicellular organisms was then postulated from observation of the structure; the discovery of the chloroplastids in the cell, for example, led to the investigation of the process of photosynthesis. With the invention of the electron microscope, the fine organization of the plastids could be used for further quantitative studies of the different parts of that process.

Qualitative and quantitative analyses in biology make use of a variety of techniques and approaches to identify and estimate levels of nucleic acids, proteinscarbohydrates, and other chemical constituents of cells and tissues. Many such techniques make use of antibodies or probes that bind to specific molecules within cells and that are tagged with a chemical, commonly a fluorescent dye, a radioactive isotope, or a biological stain, thereby enabling or enhancing microscopic visualization or detection of the molecules of interest.

Yersinia enterocolitica
Photomicrograph of Gram stain of Yersinia enterocolitica, the causative agent of yersiniosis.
Chemical labels are powerful means by which biologists can identify, locate, or trace substances in living matter. Some examples of widely used assays that incorporate labels include the Gram stain, which is used for the identification and characterization of bacteria; fluorescence in situ hybridization, which is used for the detection of specific genetic sequences in chromosomes; and luciferase assays, which measure bioluminescence produced from luciferin-luciferase reactions, allowing for the quantification of a wide array of molecules.


Tissues and organs

Tissues and organs (B)

Early biologists viewed their work as a study of the organism. The organism, then considered the fundamental unit of life, is still the prime concern of some modern biologists, and understanding how organisms maintain their internal environment remains an important part of biological research. To better understand the physiology of organisms, researchers study the tissues and organs of which organisms are composed. Key to that work is the ability to maintain and grow cells in vitro (“in glass”), otherwise known as tissue culture.

Some of the first attempts at tissue culture were made in the late 19th century. In 1885, German zoologist Wilhelm Roux maintained tissue from a chick embryo in a salt solution. The first major breakthrough in tissue culture, however, came in 1907 with the growth of frog nerve cell processes by American zoologist Ross G. Harrison. Several years later, French researchers Alexis Carrel and Montrose Burrows had refined Harrison’s methods and introduced the term tissue culture. Using stringent laboratory techniques, workers have been able to keep cells and tissues alive under culture conditions for long periods of time. Techniques for keeping organs alive in preparation for transplants stem from such experiments.

Advances in tissue culture have enabled countless discoveries in biology. For example, many experiments have been directed toward achieving a deeper understanding of biological  differentiation, particularly of the factors that control differentiation. Crucial to those studies was the development in the late 20th century of tissue culture methods that allowed for the growth of mammalian embryonic stem cells—and ultimately human embryonic stem cells—on culture plates.





İdea Yayınevi Site Haritası | İdea Yayınevi Tüm Yayınlar
© Aziz Yardımlı 2020 | aziz@ideayayı